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Synopsis 

The shear viscosity and primary normal stress coefficient were measured for colloidal dispersions 
of monodisperse silica spheres in poly(dimethylsi1oxane). The viscometric properties of the dis- 
persions were a function of the shear rate, particle diameter, and the volume fraction of particles. 
Dimensional analysis of rheological properties of colloidal dispersions of spherical particles in a 
second-order fluid was performed, and the experimental data were analyzed in terms of the appro- 
priate dimensionless groups. The reduced shear viscosity of the colloidal dispersions was a function 
of the volume fraction of particles and the reduced shear stress (or reduced shear rate). The reduced 
primary normal stress coefficient was a function of the volume fraction of particles, the reduced shear 
rate, and the Weissenberg number. 

INTRODUCTION 

The rheological properties of dispersions of colloidal particles in Newtonian 
fluids have been studied ever since the pioneering work of Einstein.' The the- 
oretical predictions of Einstein on the shear viscosity of noninteracting spheres 
in a Newtonian fluid were verified experimentally by Cheng and Schachman.2 
Although Batchelor and Green3 have solved the problem of two hydrodynami- 
cally interacting spheres in a Newtonian fluid, at  the present time a predictive 
theory is not available for concentrated suspensions, where higher-order particle 
interactions are important. Kreiger4 has developed a corresponding-states 
principle for the shear viscosity of concentrated suspensions of spherical particles 
in Newtonian fluids. Krieger measured the shear rate-dependent viscosity for 
concentrated suspensions of spherical particles while varying the volume fraction, 
particle diameter, and viscosity of the suspending medium. Using the appro- 
priate dimensionless variables, a single curve of reduced shear viscosity vs. re- 
duced shear stress was obtained for suspensions of varying particle diameters 
and viscosities of the continuous phase. Although dimensional analysis cannot 
lead to a predictive theory of suspension rheology, it is a useful procedure in 
analyzing experimental data. Recent theoretical and experimental advances 
in suspension rheology, when the continuous phase is a Newtonian fluid, have 
been reviewed.5-8 

The mechanical behavior of filled polymer fluids is of considerable practical 
importance; however, the rheological properties are not well understood for 
colloidal suspensions when the continuous phase is a polymeric fluid. The 
steady-state shear viscosity has been measured for various polymer solutions 
filled with spherical particles.g-l3 The previous studies have either (a) been 

* Current address: Continental Oil Company, Ponca City, OK 74601. 
t To whom correspondence should be addressed. 

Journal of Applied Polymer Science, Vol. 27,3079-3088 (1982) 
0 1982 John Wiley & Sons, Inc. CCC 0021-8995/82/083079-10$02.00 



3080 CANTU AND CARUTHERS 

concerned with particles that are larger than the maximum colloidal size of 10 
pm, or (b) have not reported on the effects of particle diameter on the rheological 
properties. In this communication, we report on the viscometric properties of 
poly(dimethylsi1oxane) filled with spherical silica particles, where the particle 
size is monodisperse and in the colloidal size range. 

EXPERIMENTAL 

Spherical spheres were produced by the method of Staber, Fink, and Bohn.14 
Briefly, a tetra-alkoxysilane is hydrolyzed to silicic acid, and the silicic acid 
undergoes a subsequent polycondensation reaction to form spherical silica 
particles. The solvent for the hydrolysis reaction was reagent-grade ethanol 
to which controlled amounts of water and ammonia were added. The alkoxys- 
ilane reagents were used as obtained from the manufacturer (P.C.R. Chemicals). 
The reaction flask was immersed in a ultrasonic bath at  room temperature and 
the reaction was allowed to proceed to completion. Particle size was determined 
by electron microscopy. The particles were spherical with monodisperse particle 
diameters. Detailed reaction conditions used to produce the particles used in 
this study are given in Table I. 

The silica spheres could not be added directly to the poly(dimethylsi1oxane) 
(Dow Corning 200 Fluid, 12,500 cs viscosity), since ethanol is not a solvent for 
poly(dimethylsi1oxane) (PDMS). In order to facilitate the transfer of the silica 
spheres from ethanol to the PDMS, ethyl acetate was used as an intermediate 
solvent. Specifically, one part by volume of PDMS was dissolved in 10 parts 
ethyl acetate, the dispersion of silica spheres in ethanol was also diluted with ethyl 
acetate, and the PDMS solution was then added to the dispersion of the spheres 
in ethanol and ethyl acetate. The resulting mixture was distilled under reduced 
pressure until all the ethanol and ethyl acetate was removed. Ethyl acetate 
formed minimum boiling azeotropes with the ethanol and the residual water from 
the hydrolysis reaction; thus, when the silica-ethanol dispersion was diluted, 
sufficient ethyl acetate was used so that some ethyl acetate remained after the 
ethanol and all the azeotropes were removed. When a sufficient amount of ethyl 
acetate was not present, the dispersion flocculated during the final stages of the 
distillation. 

The viscometric properties of the unfilled PDMS and the dispersions of 
spheres in PDMS were measured with an Instron 3250 rotary rheometer, using 
the cone-and-plate geometry. The diameter of the cone and plate was 4 cm, and 
the cone angle was 20 mrad. All measurements were carried out a t  30°C. The 

TABLE I 
Reaction Conditions for Synthesis of Silica Spheres 

Volume of 
Volume of saturated NH40H in 

Alkoxysilane Particle Volume of alkoxysilane, water solution, 
reagent diameter, um EtOH, mL mL mL 

Ethoxy 0.07 50 5 3 
Ethoxy 0.12 50 5 4 
Ethoxy 0.33 50 7 7 
Butoxy 0.51 50 7 7 
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steady-state shear viscosity and primary normal stress difference were deter- 
mined as a function of the shear rate. The shear rate was increased in discrete 
steps from the lowest shear rate at which meaningful torque readings could be 
obtained to a shear rate below the point where the fluid would begin to exude 
from the gap between the cone and plate. The shear rate was then decreased 
in discrete steps back to the initial shear rate. The torque and normal force 
reached their steady-state values almost as soon as the shear rate was changed. 
For all samples examined in this study, the viscosity and primary normal stress 
observed when the shear rate was increased was the same as that observed when 
the shear rate was decreased. 

- 

RESULTS 

The effect of particle concentration on the shear-rate dependent viscosity for 
0.33-pm silica spheres is shown in Figure 1. The viscosity of the unfilled PDMS 
fluid is essentially constant up to a shear rate of 50 s-l. A very slight downturn 
in the log viscosity vs. log shear rate curve is observed for the pure fluid at shear 
rates greater than 50 s-1. The shear viscosity of the dispersion increases as the 
volume fraction of spheres is increased. At low filler concentrations, the shear 
viscosity does not depend upon the shear rate. However, as the volume fraction 
of filler is increased, the viscosity begins to exhibit shear thinning behavior, and 
the degree of shear thinning increases as the concentration of spheres is in- 
creased. 

The shear rate-dependent primary normal stress coefficient !PI is shown in 
Figure 2 for the same colloidal dispersions shown in Figure 1. The unfilled 
PDMS fluid exhibits a measurable primary normal stress difference, and \kl is 
shear thinning. Since the unfilled fluid exhibits a primary normal stress dif- 
ference, the PDMS is not Newtonian even though the shear viscosity is nearly 
constant over the range of shear rates investigated. As the concentration of silica 
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Fig. 1. Shear viscosity for dispersions of PDMS f i e d  with 0.33-pm silica spheres. Pips, beginning 

upward and proceeding at 45O intervals, indicate the following volume fractions: 0.009,0.018,0.028, 
0.047,0.072, and 0.10; triangles indicate the unfilled fluid. 
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Fig. 2. Primary normal stress coefficient for dispersions of PDMS filled with 0.33-pm silica spheres. 
Symbols same as in Fig. 1. 

spheres is increased, both the magnitude of the primary normal stress difference 
and the degree of shear thinning increase. The primary normal stress difference 
is much more sensitive to the concentration of particles than the shear viscosity. 
A t  a shear rate of 10 s-l, the viscosity of a 10% dispersion of spheres in PDMS 
was twice that of the unfilled fluid; alternatively, the primary normal stress 
coefficient for the same dispersion at  the same shear rate was more than seven 
times that of the pure fluid. 

The effect of particle diameter on the shear viscosity is shown in Figure 3 for 
a series of colloidal dispersions, where the volume fraction of particles is 0.018. 
As the particle diameter is decreased, both the magnitude of the shear viscosity 
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Fig. 3. Shear viscosity vs. shear rate for different diameter spheres. Volume fraction of particles 
equals 0.018. Pips, beginning upward and proceeding at 90° intervals, indicate the following particle 
diameters: 0.51,0.33,0.12, and 0.05 pm; triangles indicate unfilled fluid. 
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and the degree of shear thinning increase. Examining the viscosity data for the 
dispersion of 0.05-pm particles, the degree of shear thinning is much more pro- 
nounced at  low shear rates than at intermediate or high shear rates. The primary 
normal stress coefficient as a function of shear rate is shown in Figure 4 for the 
same series of dispersions as in Figure 3. The primary normal stress coefficient 
increases with decreasing particle diameter. In addition, a slight increase in the 
degree of shear thinning is also observed with decreasing particle diameter; 
however, the effect is not as pronounced as with the shear viscosity data shown 
in Figure 3. 

The effect of particle diameter on the shear viscosity and primary normal stress 
coefficient are shown respectively in Figures 5 and 6 for dispersions where the 
particle volume fraction is 0.028. The effects of particle diameter on the visco- 
metric properties for these more concentrated dispersions are qualitatively 
similar to those obeseved for the 0.018 volume fraction dispersions. 

DISCUSSION 

The viscometric properties of poly(dimethylsi1oxane) filled with spherical silica 
particles depends upon both the concentration and size of the dispersed particles. 
The log viscosity vs. log shear rate curves shown in Figures 3 and 5 are similar 
in shape; thus, it should be possible to analyze the experimental data in terms 
of reduced variables. The reduced viscosity 7, is defined as 17, = v/r)o, where 77 
is the viscosity of the filled polymer and 170 is the viscosity of the pure fluid at  the 
same shear rate. A reduced shear stress 7, is defined as r,  = ra3/kT, where 7 
is the shear stress of the filled fluid, a is the particle diameter, k is Boltzmann’s 
constant, and T is the absolute tempera t~re .~  The reduced viscosity vs. the 
reduced shear stress is plotted in Figure 7 for the experimental data shown in 
Figures 3 and 5. The data in Figure 7 indicate that reduced variables are ap- 
plicable to these colloidal dispersions. Excellent superposition is observed for 
both the 0.018 and 0.028 volume fraction dispersions. A t  a given r,, the reduced 
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Fig. 4. Primary normal stress coefficient vs. shear rate for different diameter spheres. Volume 

fraction of particles equals 0.018. Symbols same as in Fig. 3. 
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Fig. 5. Shear viscosity vs. shear rate for different diameter spheres. Volume fraction of particles 

equals 0.028. Symbols same as in Fig. 3. 

viscosity is greater for the more concentrated suspension; however, the two curves 
begin to converge at  higher reduced shear stresses. 

Because of the success of the techniques of reduced variable in describing the 
shear viscosity, the primary normal stress data were analyzed in a similar manner. 
The ratio of the primary normal stress of the colloidal dispersion to the normal 
force of the unfilled fluid at  the samse shear rate was plotted against both the 
reduced shear stress 7, and a reduced shear rate +, = rJ7.1~. The effects of 
particle diameter on the reduced normal force could not be correlated with either 
reduced shear stress or the reduced shear rate alone. This result is not unex- 
pected, since PDMS is not Newtonian and the dimensional analysis as developed 
by Krieger4 considered the viscosity of a suspension of spherical particles in a 
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Fig. 6. Primary normal stress coefficient vs. shear rate for different diameter spheres. Volume 

fraction of particles equals 0.028. Symbols same as in Fig. 3. 
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Fig. 7. Reduced shear viscosity vs. reduced shear rate. Pips same as in Fig. 3. Circles denote 

4 = 0.018; squares denote 6 = 0.028. 

Newtonian fluid. The dimensional analysis for poly(dimethylsi1oxane) filled 
with spherical particles must acknowledge the primary normal stress of the 
unfilled PDMS as shown in Figure 4. 

The rheological properties of a colloidal dispersion of hard spheres will depend 
upon the following variables: particle diameter a, particle density p p ,  the 
number density of particles n, shear rate +, the time t ,  thermal energy KT, the 
density of the fluid PO, and the rheological properties of unfilled fluid. The 
suspending fluid will be described by a shear viscosity qo and a primary normal 
stress coefficient $10. Furthermore, it will be assumed that both qo and $10 are 
independent of the shear rate. The data shown in Figure 1 indicates that qo is 
essentially independent of + over the range of shear rates investigated. The shear 
rate dependence of the primary normal stress for the pure fluid as shown in 
Figure 4 indicates that as a first approximation of the primary normal stress 
coefficient is independent of shear rate. A fluid with constant qo and $10 is the 
well-known second-order fluid.15 

The functional dependence of the shear viscosity of the colloidal dispersion, 
q,  is given as 

rl = f l ( + , t , ~ O , $ l O , P O , ~ , n , p p , ~ T )  (1) 
Application of the Buckingham Pi Theorem indicates that the functional rela- 
tionship can be formulated in terms of seven dimensionless groups.16 One such 
set of dimensionless groups is the reduced shear viscosity qr = q/qo, the volume 
fraction of particles 4 = nna3/6, a reduced shear rate qr = a3qo+/KT, a reduced 
time t r  = tKT/q0a3, a relative density p r  = p p / p 0 ,  a particle Reynolds number 
Re = a2+po/q0, and the Weissenberg number We = $~o+/qo. This set of di- 
mensionless groups is the same as that previously determined by Krieger? with 
the addition of the Weissenberg number. The reduced form of eq. (1) is 

qr  = fi(d,+r,We,tr,~r,Re) (2) 

For steady flow (t ,  - a) of neutrally buoyant spheres ( p r  = 1) in the limit of 
creeping flow (Re - 0) ,  the rheological equation of state becomes 
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Fig. 8. Reduced primary normal stress coefficient vs. reduced shear rate. Volume fraction of 

particles equals 0.018. Pips same as in Fig. 3. We #loi./qo was computed using $10 = 2.91 X 
PA-S2 and qo = 11.2 PA-S. 

or equivalently 

Vr = f 4 ( 4 , ~ r , W e )  (4) 
The data in Figure 7 indicate that the reduced viscosity is a function of both the 
volume fraction and reduced shear stress, as suggested by eq. (4). However, the 
reduced viscosity is not a function of the Weissenberg number, even though the 
Weissenberg number changes by more than two orders of magnitude for the data 
shown in Figure 7. Thus, the reduced viscosity is an extremely weak function 
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Fig. 9. Reduced primary normal stress coefficient vs. reduced shear rate. Volume fraction of 
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of the Weissenberg number over the range of shear rates and particle concen- 
trations investigated in this study. 

The functional dependence of the primary normal stress coefficient of the 
colloidal dispersion, +I, is given by 

+1 = gl(i.,t,rlO,+lo,Po,a,n,p,,lzT) (5) 
Proceeding in a similar manner as in the previous development, the relevant 
dimensionless groups are 6,qr, We,t,p,,Re, and the reduced primary normal stress 
coefficient +lr = +l/+lo. The reduced form of eq. (5) is 

+ir = gz(6,?r,We,tr,pr,Re) (6) 
For steady, creeping flow of neutrally buoyant spheres, the rheological equation 
of state becomes 

+1r = gs(6,i.nWe) (7) 
Equation (7) states that the reduced primary normal stress coefficient for a 
dispersion of spherical particles in a second-order fluid depends upon the volume 
fraction of particles, the dimensionless shear rate, and the Weissenberg 
number. 

The reduced primary normal stress coefficient is plotted as a function of the 
reduced shear rate in Figures 8 and 9 for the colloidal dispersions, where the 
volume fraction of spheres equals 0.018 and 0.028, respectively. The reduced 
primary normal stress coefficient is slightly less than unity for the 0.5-pm-sphere 
dispersions at  high shear rates. This difficulty is a direct consequence of the 
assumption that the rheological properties of the pure fluid could be described 
by a second-order fluid model. If +lo is allowed to be a function of i., then +lr 

would not be less than 1; however, this generalization would require the addition 
of another dimensionless group. The reduced primary normal stress coefficient 
is a strong function of the Weissenberg number, in contrast to the reduced shear 
viscosity, which is essentially independent of We. The sensitivity of +lr to We 
is not surprising, since the parameter describing the normal stress of the pure 
fluid is contained in We. The experimental data shown in Figures 8 and 9 in- 
dicate that We must be included in a dimensional analysis of the primary normal 
stress data for colloidal dispersions. However, from the experimental data 
presented in this report, it is not possible to conclude that 6, i.,., and We are a 
sufficient set of dimensionless parameters to describe +I,.. In order to assess 
the validity of eq. (7), additional normal stress data must be obtained for colloidal 
dispersions where the primary normal stress coefficient of the continuous phase 
has been varied. 
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